References

  • Antov, A. et al. (2003) ‘Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance’, The journal of immunology, 171(7), pp. 3435–3441. Available at: https://doi.org/10.4049/jimmunol.171.7.3435

    (Accessed 21 July 23).

  • Arimoto, K.-I. et al. (2017) ‘STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling’, Nature structural & molecular biology, 24(3), pp. 279–289. Available at: https://doi.org/10.1038/nsmb.3378

    (Accessed 15 May 23).

  • Bai J, Smock SL, Jackson GR Jr, MacIsaac KD, Huang Y, et al. (2015) ‘Phenotypic Responses of Differentiated Asthmatic Human Airway Epithelial Cultures to Rhinovirus.’ PLOS ONE 10(2). Available at: https://doi.org/10.1371/journal.pone.0118286

    (Accessed 1 March 2023).

  • Brightling, C. E. et al. (2002) ‘Mast-cell infiltration of airway smooth muscle in asthma’, The New England journal of medicine, 346(22), pp. 1699–1705. Available at: https://doi.org/10.1056/NEJMoa012705

    (Accessed 13 May 2023)

  • Brightling, C. E. et al. (2005) ‘The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle’, American journal of respiratory and critical care medicine, 171(10), pp. 1103–1108. Available at: https://doi.org/10.1164/rccm.200409-1220OC

    (Accessed 13 May 2023)

  • Doran, E. et al. (2016) ‘Reduced epithelial suppressor of cytokine signalling 1 in severe eosinophilic asthma’, The European respiratory journal: official journal of the European Society for Clinical Respiratory Physiology, 48(3), pp. 715–725. Available at: https://doi.org/10.1183/13993003.00400-2015

    (Accessed 27 August 2023)

  • Drappier, M. and Michiels, T. (2015) ‘Inhibition of the OAS/RNase L pathway by viruses’, Current opinion in virology, 15, pp. 19–26. Available at: https://doi.org/10.1016/j.coviro.2015.07.002

    (Accessed on 24 August 2023)

  • Hansbro, N.G., Horvat, J.C., Wark, P.A. and Hansbro, P.M. (2008) ‘Understanding the mechanisms of viral induced asthma: New therapeutic directions’, Pharmacology & therapeutics, 117(3), pp. 313–353. Available at: https://doi.org/10.1016/j.pharmthera.2007.11.002

    (Accessed 10 March 2023)

  • Harrison, D. A. (2012) ‘The JAK/STAT pathway’, Cold Spring Harbor perspectives in biology, 4(3), pp. a011205–a011205. Available at: https://doi.org/10.1101/cshperspect.a011205

    (Accessed 14 June 2023)

  • Holgate, S. T. (2007) ‘Epithelium dysfunction in asthma’, The journal of allergy and clinical immunology, 120(6), pp. 1233–44; quiz 1245–6. Available at: https://doi.org/10.1016/j.jaci.2007.10.025

    (Accessed 14 May 2023)

  • Hu, X. et al. (2021) ‘The JAK/STAT signaling pathway: from bench to clinic’, Signal transduction and targeted therapy, 6(1), p. 402. Available at: https://doi.org/10.1038/s41392-021-00791-1

    (Accessed 29 June 23).

  • Human Protein Atlas (2023a). OAS1 protein expression summary. Available at: https://www.proteinatlas.org/ENSG00000089127-OAS1

    (Accessed: 14 May 2023).

  • Human Protein Atlas (2023b). OAS2 protein expression summary. Available at: https://www.proteinatlas.org/ENSG00000111335-OAS2

    (Accessed: 14 May 2023).

  • Human Protein Atlas (2023c). OAS3 protein expression summary. Available at: https://www.proteinatlas.org/ENSG00000111331-OAS3

    (Accessed: 14 May 2023).

  • Human Protein Atlas (2023d). STAT2 protein expression summary. Available at: https://www.proteinatlas.org/ENSG00000170581-STAT2

    (Accessed: 14 May 2023).

  • Kabesch, M. and Tost, J. (2020) ‘Recent findings in the genetics and epigenetics of asthma and allergy’, Seminars in immunopathology, 42(1), pp. 43–60. Available at: https://doi.org/10.1007/s00281-019-00777-w

    (Accessed 27 April 2023).

  • Kaplan, D. H. et al. (1998) ‘Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice’, Proceedings of the National Academy of Sciences of the United States of America, 95(13), pp. 7556–7561. Available at: https://doi.org/10.1073/pnas.95.13.7556

    (Accessed 21 July 23).

  • KEGG (2023). ‘NF-kappa B signaling pathway - Homo sapiens (human)’. Available at: https://www.genome.jp/pathway/hsa04064

    (Accessed: 29 August 2023).

  • Kim, J. et al. (2020) ‘Genome‑wide analysis of DNA methylation and gene expression changes in an ovalbumin‑induced asthma mouse model’, Molecular medicine reports, 22(3), pp. 1709–1716. Available at: https://doi.org/10.3892/mmr.2020.11245

    (Accessed 28 August 2023)

  • King, G. G. et al. (2018) ‘Pathophysiology of severe asthma: We’ve only just started’, Respirology (Carlton, Vic.), 23(3), pp. 262–271. Available at: https://doi.org/10.1111/resp.13251

    (Accessed 12 May 2023)

  • Kristiansen, H. et al. (2010) ‘Extracellular 2′-5′ oligoadenylate synthetase stimulates RNase L-independent antiviral activity: A novel mechanism of virus-induced innate immunity’, Journal of virology, 84(22), pp. 11898–11904. Available at: https://doi.org/10.1128/jvi.01003-10

    (Accessed 24 August 2023)

  • Lee, D. et al. (2023) ‘Inborn errors of OAS–RNase L in SARS-CoV-2–related multisystem inflammatory syndrome in children’, Science (New York, N.Y.), 379(6632). Available at: https://doi.org/10.1126/science.abo3627

    (Accessed on 24 August 2023)

  • Lee, W.-B. et al. (2019) ‘OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages’, BMB reports, 52(2), pp. 133–138. Available at: https://doi.org/10.5483/bmbrep.2019.52.2.129

    (Accessed 23 August 2023)

  • Lee, Y. G. et al. (2015) ‘Recruited alveolar macrophages, in response to airway epithelial–derived monocyte chemoattractant protein 1/CCL2, regulate airway inflammation and remodeling in allergic asthma’, American journal of respiratory cell and molecular biology, 52(6), pp. 772–784. Available at: https://doi.org/10.1165/rcmb.2014-0255oc

    (Accessed 23 August 2023)

  • Li, Y. et al. (2016) ‘Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses’, Proceedings of the National Academy of Sciences of the United States of America, 113(8), pp. 2241–2246. Available at: https://doi.org/10.1073/pnas.1519657113

    (Accessed 24 August 2023)

  • Liu, T. et al. (2017) ‘NF-κB signaling in inflammation’, Signal transduction and targeted therapy, 2(1), pp. 1–9. Available at: https://doi.org/10.1038/sigtrans.2017.23

    (Accessed on 23 August 2023)

  • Low, Z. Y. et al. (2022) ‘The Suppressor of Cytokine Signalling family of proteins and their potential impact on COVID‐19 disease progression’, Reviews in medical virology, 32(3). Available at: https://doi.org/10.1002/rmv.2300

    (Accessed 27 August 2023)

  • Madden, J. C., Jr, Cui, D. and Brinton, M. A. (2019) ‘RNase L antiviral activity is not a critical component of the Oas1b-mediated Flavivirus resistance phenotype’, Journal of virology, 93(22). Available at: https://doi.org/10.1128/jvi.00946-19

    (Accessed 24 August 2023)

  • Mathé, J., Benhammadi, M., Kobayashi, K.S., Brochu, S. and Perreault, C. (2022) ‘Regulation of MHC Class I Expression in Lung Epithelial Cells during Inflammation.’ J Immunol, 208(5), pp. 1021–1033. Available at: https://doi.org/10.4049/jimmunol.2100664

    (Accessed 25th March 2023).

  • Miller, M. et al. (2012) ‘ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6’, Proceedings of the National Academy of Sciences of the United States of America, 109(41), pp. 16648–16653. Available at: https://doi.org/10.1073/pnas.1204151109

    (Accessed 28 August 2023)

  • Mitchell, T. J. and John, S. (2005) ‘Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas’, Immunology, 114(3), pp. 301–312. Available at: https://doi.org/10.1111/j.1365-2567.2005.02091.x

    (Accessed 17 June 2023).

  • NAEPP: National Asthma Education and Prevention Program (2007) ‘Section 2, Definition, Pathophysiology and Pathogenesis of Asthma, and Natural History of Asthma’, Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma, pp, 11–34. Available at: https://www.ncbi.nlm.nih.gov/books/NBK7223/

    (Accessed 12 May 2023)

  • Ong, T. et al. (2019) ‘Adeno-associated viral gene therapy for inherited retinal disease’, Pharmaceutical research, 36(2), p. 34. Available at: https://doi.org/10.1007/s11095-018-2564-5

    (Accessed 28 August 2023)

  • Pai, S. and Thomas, R. (2008) ‘Immune deficiency or hyperactivity-NF-κB illuminates autoimmunity’, Journal of autoimmunity, 31(3), pp. 245–251. Available at: https://doi.org/10.1016/j.jaut.2008.04.012

    (Accessed 23 August 2023)

  • Pasrija, R. and Naime, M. (2021) ‘The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease’, International immunopharmacology, 90(107225), p. 107225. Available at: https://doi.org/10.1016/j.intimp.2020.107225

    (Accessed 23 August 2023)

  • Prunicki, M. et al. (2018) ‘Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma’, Clinical epigenetics, 10(1). Available at: https://doi.org/10.1186/s13148-017-0433-4

    (Accessed on 28 August 2023)

  • Ronni, T. et al. (1997) ‘Regulation of IFN-alpha/beta, MxA, 2’,5’-oligoadenylate synthetase, and HLA gene expression in influenza A-infected human lung epithelial cells’, The journal of immunology, 158(5), pp. 2363–2374. Available at: https://doi.org/10.4049/jimmunol.158.5.2363

    (Accessed 23 August 2023)

  • Sajuthi, S. P. et al. (2022) ‘Nasal airway transcriptome-wide association study of asthma reveals genetically driven mucus pathobiology’, Nature communications, 13(1), p. 1632. Available at: https://doi.org/10.1038/s41467-022-28973-7

    (Accessed 29 April 2023)

  • Silverman, R.H. and Weiss, S.R. (2014) ‘Viral phosphodiesterases that antagonize double-stranded RNA signaling to RNase L by degrading 2-5A’, Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research, 34(6), pp. 455–463. Available at: https://doi.org/10.1089/jir.2014.0007

    (Accessed 29 August 2023)

  • Torices, S. et al. (2023) ‘Occludin regulates HIV-1 infection by modulation of the interferon stimulated OAS gene family’, Molecular neurobiology, 60(9), pp. 4966–4982. Available at: https://doi.org/10.1007/s12035-023-03381-0

    (Accessed 24 August 2023)

  • Wang, T. et al. (2004) ‘Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells’, Nature medicine, 10(1), pp. 48–54. Available at: https://doi.org/10.1038/nm976

    (Accessed 21 July 23).

  • WikiPathways (2019), Non-genomic actions of 1,25 dihydroxyvitamin D3 (WP4341). Available at: https://www.wikipathways.org/pathways/WP4341.html

    (Accessed: 14 May 2023).

  • WikiPathways (2021), Host-pathogen interaction of human coronaviruses - interferon induction (WP4880). Available at: https://www.wikipathways.org/pathways/WP4880.html

    (Accessed: 10 May 2023).

  • WikiPathways (2022), Measles virus infection (WP4630). Available at: https://www.wikipathways.org/pathways/WP4630.html

    (Accessed: 14 May 2023).

  • WikiPathways (2023), Type I interferon induction and signaling during SARS-CoV-2 infection (WP4868). Available at: https://www.wikipathways.org/pathways/WP4868.html

    (Accessed: 10 May 2023).

  • Zhang, P. et al. (2013) ‘SAHA down-regulates the expression of indoleamine 2,3-dioxygenase via inhibition of the JAK/STAT1 signaling pathway in gallbladder carcinoma cells’, Oncology reports, 29(1), pp. 269–275. Available at: https://doi.org/10.3892/or.2012.2073.

    (Accessed 27 August 2023)

Last updated